Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae.

نویسندگان

  • Diana E Libuda
  • Fred Winston
چکیده

Gene amplification, a process that increases the copy number of a gene or a genomic region to two or more, is utilized by many organisms in response to environmental stress or decreased levels of a gene product. Our previous studies in Saccharomyces cerevisiae identified the amplification of a histone H2A-H2B gene pair, HTA2-HTB2, in response to the deletion of the other H2A-H2B gene pair, HTA1-HTB1. This amplification arises from a recombination event between two flanking Ty1 elements to form a new, stable circular chromosome and occurs at a frequency higher than has been observed for other Ty1-Ty1 recombination events. To understand the regulation of this amplification event, we screened the S. cerevisiae nonessential deletion set for mutations that alter the amplification frequency. Among the deletions that increase HTA2-HTB2 amplification frequency, we identified those that either decrease DNA replication fork progression (rrm3Delta, dpb3Delta, dpb4Delta, and clb5Delta) or that reduce histone H3-H4 levels (hht2-hhf2Delta). These two classes are related because reduced histone H3-H4 levels increase replication fork pauses, and impaired replication forks cause a reduction in histone levels. Consistent with our mutant screen, we found that the introduction of DNA replication stress by hydroxyurea induces the HTA2-HTB2 amplification event. Taken together, our results suggest that either reduced histone levels or slowed replication forks stimulate the HTA2-HTB2 amplification event, contributing to the restoration of normal chromatin structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The FACT histone chaperone guides histone H4 into its nucleosomal conformation in S. cerevisiae

The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone FACT, causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a ...

متن کامل

Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae.

Balanced levels of histones are crucial for chromosome stability, and one major component of this control regulates histone mRNA amounts. The Saccharomyces cerevisiae poly(A) polymerases Trf4 and Trf5 are involved in a quality control mechanism that mediates polyadenylation and consequent degradation of various RNA species by the nuclear exosome. None of the known RNA targets, however, explains...

متن کامل

Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae.

In higher eukaryotes, heritable gene silencing is associated with histone deacetylation and late replication timing. In Saccharomyces cerevisiae, the histone deacetylase Rpd3 regulates gene expression and also modulates replication timing; however, these mechanisms have been suggested to be independent, and no global association has been found between replication timing and gene expression leve...

متن کامل

The FACT histone chaperone guides histone H4 into its nucleosomal conformation in Saccharomyces cerevisiae.

The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote ...

متن کامل

DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 184 4  شماره 

صفحات  -

تاریخ انتشار 2010